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was used to study the kinetics and the thermodynamics of a three-phase system. This free energy is able
to achieve three phases coexistence, which for simplicity we call ˛, ˇ and � phases. Our study focused on
the kinetics of phase transition rather than the nucleation of a seed of a new phase that was introduced
into the matrix of the old phase when the relative stability of the three phases were changed. We found
dynamical as well as kinetically arrested static scenarios in the appearance of the macroscopic metastable
phase. A few other interesting scenarios of the kinetics of phase transition in this three-phase system

disc

hase transformation
etastable phase will be demonstrated and

. Introduction

The study of the phase transition in a multi-phase system has
een studied for many years. In particular, the multi-step phase
ransition which involves the formation of intermediate long-
ived metastable third phase when the phase transition from one
hase to another occurs has been studied for more than a century
1,2]. Recently, a renewed interest in the phase transition in the

ulti-phase system [3–6] has emerged. The formation of the ther-
odynamically metastable third phase is important academically

s well as industrially because many industrial products are in a
ong-lived metastable state [3].

In this report, we use the cell dynamics method employed pre-
iously to study the kinetics of the phase transition in a simple
hree-phase system [7] and study the kinetics for more wide spec-
rum of free energy landscape using phase-field model, which has
een extensively used to study various scenarios of phase tran-
ition [8–12]. We employ cell dynamics method as we want to
onsider the evolution of multiple nucleus with general symme-
ry while the previous authors, instead, considered the evolution
f one-dimensional traveling wave solution. [13–17] of single
ucleus. We pay special attention to the formation of metastable
hird phase during the phase transition between first to second
hases.
∗ Tel.: +81 3 5707 0104; fax: +81 3 5707 2222.
E-mail address: iwamatsu@ph.ns.tcu.ac.jp.
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2. Model free energy for three-phase system

In order to study the phase transition kinetics in the multi-phase
system, we will use the partial differential equation called isother-
mal phase-field equation for the non-conserved order parameter
[18]:

∂ 

∂t
= − ıF

ı 
(1)

where  is called phase-field and is actually the n on-conserved
order parameter and F is the free energy functional (grand poten-
tial), which is usually written as the square-gradient form:

F[ ] =
∫ [

1
2

(∇ )2 + f ( )
]
dr (2)

where the local part of the free energy f ( ) will be specified later
and will realize the multi-phase system. As a special solution, Eq.
(1) is expected to allow an interface-controlled growth with nearly
constant velocity [19]. It should be noted that these dynamics Eq.
(1) always guarantee that the total free energy decreases monoton-
ically because [20]

dF
dt

=
∫
ıF
ı 

∂ 

∂t
dr = −

∫ (
ıF
ı 

)2

dr ≤ 0 (3)

by reducing the local free energy f or the surface tension that is
proportional to (∇ )2 in Eq. (2).
We will consider the simplest multi-phase system with only
three phases and introduce a local free energy function f ( ) of
triple-well form as a function of the non-conserved order param-
eter  . We extend the analytical free energy f ( ) proposed by
Widom [21] in order to achieve the relative stability of three

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:iwamatsu@ph.ns.tcu.ac.jp
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ig. 1. The model triple-well free energy f ( ). In this figure, we show three cases:
ase A (�ˇ = −0.3, �� = 0.05) fˇ < f� < f˛ , Case B (�ˇ = −0.2, �� = 0.15) f� <
ˇ < f˛ , and Case C (�ˇ = 0.2,�� = 0.05) f� < f˛ < fˇ .

hases:

( ) = 1
4

( + 1)2( − 1)2( 2 +�ˇ) +��
(

1
3
 3 − 

)
− 2

3
��

(4)

hich can realizes the two-phase and three-phase system accord-
ng to the magnitude of two parameters�ˇ and�� . We have three
hases ˛with the free energy f˛ at ˛ = −1, ˇwith fˇ at ˇ∼0, and
with f� at � = 1. Now the free energy landscape consists of two
ells ˛ and �-wells, or three wells ˛, ˇ and �-wells. The parameter

ˇ controls the relative stability of the intermediate ˇ phase while
he parameter�� controls the stability of the � phase. Because the
ole of � and ˛ is interchangeable, we will only consider the cases
hen the � phase or the intermediate ˇ phase are the most stable

hermodynamic phase. Therefore, we will restricted to �� > 0 as
he free energy at the � phase is given by

� = f ( = 1) = −4
3
�� (5)

hile the free energy of the ˛ phase is always fixed to f˛ = 0. The
ree energy of ˇ phase is approximately given by

ˇ∼f ( = 0) = 1
4
�ˇ − 2

3
��. (6)

everal typical shapes of the free energy function f ( ) for several

ets of the parameters�ˇ and�� are shown in Fig. 1.

We observe from the Fig. 1 that there are typically three cases
or the free energy landscape according to the relative stability of
hree states. Case A when fˇ < f� < f˛ is a rather special case as
he intermediate ˇ phase is most stable. Case B when f� < fˇ < f˛

ig. 3. A Gray-level view of the time evolution of a three-layer stripes when �ˇ = −0.2
he stable ˇ phase, and the white area is the metastable � phase. Initially the less stable �
oes not contain the stable ˇ phase, it appears spontaneously at the metastable ˛–� inte
Fig. 2. The phase diagram for the model free energy Eq. (4). Case A:fˇ < f� < f˛ ,
Case B:f� < fˇ < f˛ , and Case C:f� < f˛ < fˇ . The triple point is at�ˇ = 0 and�� = 0,
where all three phases coexist with f˛ = fˇ = f� = 0.

has been considered by Bechhoefer et al. [13] and Celestini and ten
Bosch [14] though they considered only a special traveling solu-
tion. Case C when f� < f˛ < fˇ is the most interesting and relevant
to the phase transition of several soft-condensed matter system
[3,4] and has been studied by Evans et al. [16,17] for the kinetics
of conserved order parameter and by the present author [7] for the
non-conserved order parameter when f˛ = f� . The phase diagram
of this system in the two parameter space (�ˇ,�� ) is shown in
Fig. 2.

Similar triple-well potentials of different functional forms were
used by several workers to study the nucleation [15,22] and
the metastable phase formation using phase-field model of non-
conserve [7,13–15] and conserved [16,17] order parameter.

3. Results of numerical simulation using cell dynamics

3.1. Cell dynamics and phase-field model

According to the cell dynamics method [23], the partial differ-
ential Eq. (1) is transformed into the finite difference equation in
space and time:

 (t + 1, n) = F[ (t, n)] (7)

where the time t is discrete integer and the space is also discrete

and is expressed by the site index (integer) n. The mapping F is
given by

F[ (t, n)] = g( (t, n)) + 1
2

[
�  (t, n) � − (t, n)

]
(8)

and �� = 0.15 (Case A). The black area is the metastable ˛ phase, the gray area is
phase is sandwiched by metastable ˛ phase at t = 0. Even though, the initial state

rface and continues to grow.
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Fig. 4. The cross section view of the stripe structure similar to Fig. 3. The most stable
� phase with  = 1 is sandwiched by the least stable ˛ phase with  = −1. In this
case, dynamically stable ˇ phase with  � 0 appears even though it is thermody-
namically metastable.
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ig. 5. The time evolution of the position of ˛–ˇ interface and ˇ–� interface. The
osition is measured from the bottom of the 128 × 128 pixels of Fig. 3. Two nearly
traight lines indicate the propagation with constant velocities that are given by the
lopes.

here the definition of � ∗ � for the two-dimensional square grid
s given by
 (t, n) �= 1
6

∑
i=nn

 (t, i) + 1
12

∑
i=nnn

 (t, i) (9)

ith “nn” means the nearest neighbors and “nnn” the next-nearest
eighbors of the square grid. Instead of the original map func-

ig. 6. Evolution of the most stable circular nuclei of � phase (white) embedded in least
ayer (gray) appears around the � core and grows at the �–˛ interface.
Fig. 7. A composite nucleus of stable � stripe (white) sandwiched by a less stable ˛
phase (black) embedded in most metastable ˇ phase (gray) at t = 200. This config-
urations is kinetically arrested and cannot grow even though there is a seed of the
most stable � phase (white).

tion g( ) =  − 1.3 tanh [23], we used the map function that is
directly derived from the free energy landscape f ( ):

g
(
 

)
=  − df

d 
(10)

which is essential in order to study the kinetics of phase transition
when a subtle balance of the relative stability of the three phases
in the three-phase system plays a crucial role [7,24,25].

3.2. Kinetics of phase transition in a three-phase system

Since we are most interested in the evolution or regression of the
metastable phase during the phase transformation after nucleation,
we will only examine the kinetics of phase transition when vari-
ous composite nuclei made from three phases are prepared in the
materials using the cell dynamics equation Eq. (7) and the model
free energy defined by Eq. (4) (Fig. 1).

3.2.1. Case A (fˇ < f� < f˛)
We have incorporated the above free energy Eq. (4) into the

cell dynamics code Eq. (7) used previously to study the KJMA
(Kolmogorov–Johnson–Mehl–Avrami) dynamics [26]. In this case,
the intermediate middle ˇ-well of the free energy landscape in
Fig. 1 is most deep and the left and the right well is shallower.
In this case the ˇ phase is most stable and the � phase and the ˛
phase are metastable.

In Fig. 3, we prepare the metastable (white) � strip of width 21

embedded in the middle of the metastable (black)˛phase with size
128 × 128 and observe the evolution of the system. Throughout this
paper, we will use 128 × 128 system where a periodic boundary
condition is imposed. We use the potential parameters�ˇ = −0.2
and �� = 0.15 which correspond to the curve for Case A in Fig. 1.

stable ˛ phase (black). Again the dynamically stabilized macroscopic metastable ˇ
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ig. 8. Composite nuclei with the most stable circular core of � phase surrounded
wo colliding nucleus is observed near the center. This boiled-egg configuration is s

ig. 3 shows that the most stable (gray) ˇ phase appears sponta-
eously at the interface of two metastable � and ˛ phases during
he evolution. This stable ˇ slab continues to grow and invades
he metastable � as well as ˛ phase. Finally the whole material
ransforms into the stable ˇ phase.

.2.2. Case B (f� < fˇ < f˛)
Now the right � well is deepest, and the middle ˇ well is the

ext and the left ˛well is most shallow (Fig. 1). This staircase con-
guration of the free energy landscape was previously studied by
echhoefer et al. [13] and Celestini and ten Bosch [14].

In Fig. 4 we start from the same stripe configuration as that
n Fig. 3. Now the moving ˛–� interface unbind into a pair of

oving ˛–ˇ and moving ˇ–� interface and a macroscopic slab of
etastable ˇ phase appears. The small oscillation in the phase field
in the � phase is probably due to the interference effect because

t is confined. Since the ˇ–� interfacial velocity is slower than the
–ˇ velocity (Fig. 5), the metastable ˇ slab appears and continues

o grow.
Fig. 5 shows the time evolution of the position of the ˛–ˇ inter-

ace defined by = −0.5 and theˇ–� interface defined by = 0.5.
wo nearly straight lines with different slopes indicate that the two
nterfaces propagate with different constant velocities. Since the
–� free energy difference is smaller than the ˛–ˇ free energy dif-

erence (Fig. 1), the ˇ–� interfacial velocity is slower than the ˛–ˇ
nterfacial velocity (Fig. 5) as they are expected to be proportional
o the free energy difference [19,25].

Our numerical simulation directly confirmed the existence of
dynamically stabilized metastable state predicted by the theo-

etical calculations of Bechhoefer et al. [13] and Celestini and ten
osch [14]. However, the appearance of this dynamically stabilized
etastable ˇ phase is not due to the special symmetry of planer
ave front assumed by those authors [13,14]. Fig. 6 shows the evo-

ution of the multiple of circular nucleus of most stable � phase
mbedded in least stable ˛ phase. Again, the metastable ˇ layer
ppears around the growing � core spontaneously and will grow.

.2.3. Case C (f� < f˛ < fˇ)
In this case, the right �-well is deepest, while the left ˛-well is

he next, and the middle ˇ well is the shallowest and least stable
Fig. 1). This free energy configuration with metastable intermedi-
te phase or buried metastable phase was previously studied by a
ew authors [2,7,16,17].

Now the direct phase transition from the metastable right ˛
hase to the stable left � phase (Fig. 1) is prohibited from Eq. (3)

s the reaction path must go through the intermediate ˇ phase
ith higher free energy. As a consequence, a composite nucleus of
stripe made from the most stable � phase of width 21 sandwiched
y the next stable ˛ phase of width 33 embedded in the center of

east stable ˇ phase as shown in Fig. 7 will be kinetically arrested
hin layer of less stable ˛ phase embedded in least stable ˇ phase. Only a fusion of
and kinetically arrested.

as the most stable � phase cannot invade the ˛ phase and cannot
grow. Even though the ˛–� front is freeze, the ˛–ˇ front can grow
as the ˛ phase can grow by consuming the surrounding ˇ phase.
However, since we do not include thermal fluctuation (noise) in our
kinetic Eq. (2), the ˛–ˇ front is virtually arrested as there exists a
small barrier between ˛well and ˇ well (Fig. 1).

The appearance of this kinetically arrested metastable ˇ phase
around the composite nucleus made from the most stable � core
wrapped by the least stable ˛ skirt is not due to the planer symme-
try. Fig. 8 shows the evolution of the multiple of circular composite
nuclei consist of most stable � phase of radius 5 surrounded by a
thin layer of least stable˛phase of radius 8 embedded in a least sta-
ble ˇ phase. Again, these composite nuclei are kinetically arrested
and cannot grow. Only a fusion of two colliding nuclei occurs near
the center. The resulting oval nucleus of�wrapped by a thin layer of
metastable˛ is static and stable again. Then the metastableˇ phase
environment survives even though there are seeds of most stable �
phase. This configuration called boiled-egg structure was predicted
from experiments [3,27,28] and was found by the cell dynamics
simulation of three-phase system by the author [7] for the special
case of single composite nucleus and the ˛–� equilibrium.

Since we start from the static configuration, not only the evo-
lution of the most stable � phase by ˛→ � transition is prohibited
but also the evolution of the surrounding ˛ phase by ˇ→ ˛ tran-
sition cannot be initiated spontaneously as the free energy barrier
between˛phase andˇphase exists (Fig. 1). Naturally, the introduc-
tion of the thermal noise initiates ˇ→ ˛ transition [7]. However,
this kinetically arrested phase implies fairly long lifetime of these
metastable configuration [7].

4. Conclusion

In this paper, we have used the cell dynamics method to explore
various scenario of phase transition in three-phase system that
is characterized by a single non-conserved order parameter. We
have considered three cases when a relative stability of three
phases, ˛, ˇ and � phases are different. We have found several
interesting scenarios of the kinetic of phase transition in a three-
phase system: (a) the appearance of stable third phase from the
interface of two metastable phase, (b) the appearance of dynam-
ically stable third metastable phase from the moving interface
between stable and metastable phase, and (c) the appearance of
kinetically arrested third metastable phase around the composite
nuclei made from the stable phase surrounded by a thin layer of
metastable phase. Although, the last two examples have already

been predicted theoretically [13,14], or numerically [7] for special
configuration, we showed in this paper using cell dynamics simula-
tion that these predictions are qualitative correct even for multiple
nuclei in two-dimensions and for more wide variety of free energy
landscape.



S nd Com

R

[

[

[
[
[

[
[
[
[
[
[

[
[
[

[
041503.
542 M. Iwamatsu / Journal of Alloys a

eferences

[1] W. Ostwald, Z. Phys. Chem. (Munich) 22 (1997) 286.
[2] J.W. Cahn, J. Am. Ceram. Soc. 52 (1969) 118.
[3] W.C.K. Poon, J. Phys. Condens. Matter 14 (2002) 859.
[4] P.G. Vekilov, Cryst. Growth Des. 4 (2004) 671.
[5] R.P. Sear, J. Phys. Condens. Matter 19 (2007) 033101.
[6] G.I. Tóth, L. Gránásy, J. Chem. Phys. 127 (2007) 074709, 074710.
[7] M. Iwamatsu, Phys. Rev. E 71 (2005) 061604.
[8] O.T. Valls, G.F. Mazenko, Phys. Rev. B 42 (1990) 6614.
[9] I. Steinbach, F. Pezzola, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schmitz, J.L.L.

Rezende, Physica D 94 (1996) 135.
10] D. Raabe, Computational Material Science, Wiley-VCH, Weinheim, 1998 (Chap-
ter 10).
11] T. Pusztai, G. Tegze, G.I. Tóth, L. Környei, G. Bansel, Z. Fan, L. Gránásy, J. Phys.

Condens. Matter 20 (2008) 404205.
12] H. Emmerlich, J. Phys. Condens. Matter 21 (2009) 464103.
13] J. Bechhoefer, H. Löwen, L.S. Tuckerman, Phys. Rev. Lett. 67 (1991) 1266.
14] F. Celestini, A. ten Bosch, Phys. Rev. E 50 (1994) 1836.

[
[
[

[

pounds 504S (2010) S538–S542

15] L. Gránásy, D.W. Oxtoby, J. Chem. Phys. 112 (2000) 2410.
16] R.M.L. Evans, W.C.K. Poon, M.E. Cates, Europhys. Lett. 38 (1997) 595.
17] R.M.L. Evans, M.E. Cates, Phys. Rev. E 56 (1997) 5738.
18] M. Castro, Phys. Rev. B 67 (2003) 035412.
19] S-K. Chan, J. Chem. Phys. 67 (1977) 5755.
20] J.S. Langer, Solids Far From Equilibrium, In: C. Godrèche (Ed.), Cambridge UP,

Cambride, 1992 (Chapter 3).
21] B. Widom, J. Chem. Phys. 68 (1978) 3878.
22] R.M. Bradley, P.N. Strenski, Phys. Rev. B 40 (1989) 8967.
23] Y. Oono, S. Puri, Phys. Rev. A 38 (1988) 434; S. Puri, Y. Oono, Phys. Rev. A 38

(1988) 1542.
24] S.R. Ren, I.W. Hamley, P.I.C. Teixeira, P.D. Olmsted, Phys. Rev. E 63 (2001)
25] M. Iwamatsu, M. Nakamura, Jpn. J. Appl. Phys. Part 1 44 (2005) 6688.
26] M. Iwamatsu, J. Chem. Phys. 128 (2008) 084504.
27] W.C.K. Poon, F. Renth, R.M.L. Evans, D.J. Fairhurst, M.E. Cates, P.N. Pusey, Phys.

Rev. Lett. 83 (1999) 1239.
28] F. Renth, W.C.K. Poon, R.M.L. Evans, Phys. Rev. E 64 (2001) 031402.


	Cell dynamics modeling of phase transformation and metastable phase formation
	Introduction
	Model free energy for three-phase system
	Results of numerical simulation using cell dynamics
	Cell dynamics and phase-field model
	Kinetics of phase transition in a three-phase system
	Case A (fβ<fγ<fα)
	Case B (fγ<fβ<fα)
	Case C (fγ<fα<fβ)


	Conclusion
	References


